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CALCULATION OF A HEAT PIPE WITH HEAT
FLUXES EXCEEDING THE LIMITING VALUE

B.F¥. Aptekar' and I. M. Blinchevskii UDC 536.248.2

The problem of the axial temperature profile and the dependence of the thermal resistances of a heat pipe
{(Ry,) and of the source — sink system connected with the heat pipe (Rg_gi) on the load factor w =Q/Qlim when
the heat flux Q transmitted by the heat pipe exceeds the limiting heat flux Qlim is solved in the one-dimensional
approximation. In this case the wickin the heating zone dries partly, since the capillary pump does notensure
the pumping of the liquid heat carrier through the entire length of the heat pipe.

The calculation is carried out in four sections of the heat pipe: a) in the heating zone with a dry wick; b)
in the heating zone with a moistened wick; c) in the adiabatic zone; d) in the condensation zone. A number of
simplifying assumptions are made and a connection is obtained between w and the dimensionless profile of the
temperature 6gp, of the shell of the heat pipe,

1 1
% = 505. Gshdql//j; Oghdn?,

where 7 is the dimensionless axial coordinate; 7 isthe dimensionless coordinate of the end of the dry section.

The dimensionless thermal resistances of the heat pipe and the source — sink system are determined by
the equations

- 0 —0,), x> 1 _ (05 — Ogi), x>1
b= T, — 0, x=1 ' Psd T (@5 —6g), x=l
where 6, 8,, 85, and fg;are the dimensionless temperatures of the hot and cold ends of the heat pipe and of the
heat source and sink, respectively.

The dependence 0gp(n) was calculated by solving the heat-conduction equation for the shell of the heat
pipe. The quantity n, was obtained from the well-known equation for determining the quantity Q)i in the one-
dimensional approximation. The equations obtainedare supplementedby the heat-flux balances at the outer
surface of the shell of the heat pipe in the heating and condensation zones.

Analytical expressions for the dependences of p and » were obtained for two cases: a) The axial heat con-
duction of the shell is important; b) itis negligibly small. The temperature profiles along a heat pipe with a
partly dry wick andthe dependences of p and » were calculated on a computer. It is shown that in the first
case the heatpipes and source—sink systems are less sensitive toheat-flux overloads than inthe second case. -
Since in the firstcase when Q>Qjy the deformation of the temperature profile in the heating zone is not very
noticeable, it is desirable to determine the experimental values of Q)jy, from the bend in the dependence of Ry

on Q.
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CALCULATION OF THE SEPARATION RADIUS OF A
VAPOR BUBBLE DURING BOILING UNDER VACUUM CONDITIONS

S. M. Konstantinov and A. A. Tereshchenko UDC 536.423.1

An equationproposed earlier forthedeterminationof the separation radius of a vapor bubble during boiling in
avacuum is refined. Todetermine thevalues of the coefficient C of the apparent mass in the calculating function

AAZ \2/3/ 49C \1/3
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we suggest the empirical dependence

C = 219exp (—3.4P).

Dep. 802-78, Sept. 26, 1977,
Original paper submitted Feb. 18, 1977.

PROFILE STABILIZATION OF PLANE FLOW OF A
FISSIONABLE MEDIUM IN A QUASI-ONE-DIMENSIONAL
APPROXIMATION WITH A BOUNDARY CONDITION

OF THE THIRD KIND

S. M, Babenko, P. P. Lazarev, UDC 536.24:532.54
and A.S. Pleshanov

The flow of an ideal Newtonian gas, for which the coefficients of viscosity and thermal conductivity are
power-law functions of the temperature T and the internalheat release is Q@ ~1/T, ina plane channel of constant
cross section is studied theoretically. In contrastto [1], where ananalogous problem was solved with a fixed
value of T at the channel walls (a boundary condition of the first kind). here the heat flux and T atthe channel
walls are connectedby a linear relation (a boundary condition of the thirdkind). As in [1], it is assumed that
the Mach numbers M are small and the Reynolds and Peclét numbers are large. The steady-state equations
of hydrodynamics are decomposed with respectto the small parameter MZ.

The fransient process due tothe turning on of heat release at the channel entrance. at whicha stabilized
stream with Q =0 arrives, is studied. On the example of a model problem it is shown that the quasi-one-dimen-
sional description of the two-dimensionalsituation has an asymptotic character. The profiles of the veloeity
uand of T aretaken from the stabilized solution in implicit form, where T plays the role of the natural trans-
verse coordinate while the values of u and T atthe channelaxis are the unknown functions. The coefficients
of non-one-dimensionality introduced in[1}, whichappear upon averaging, are generalized to the case of a
variable value of T at the wall.

Graphs are presented of the distribution alongthe length of the channel of the dimensionless values of
T and uat the channel axis, as well as of the dimensionless decrease inpressure. As a supplement to[1] itis
discovered that the conditional length of stabilization approachesa constant value notonly asQ —0 but also as
Q —~», When the temperature of the external medium is low enoughthe ratio of the values of T at the channel
wall and axis canvary nonmonotonically along the length of the channel. Aboundary condition of the thirdkind leads to
asmaller difference between the values of T at the channel wall and axis than a boundary condition of the first kind.
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ON THE REACTION OF A FLUID TO A SPHERE OF VARIABLE
RADIUS MOVING NEAR A RIGID WALL

8. K. Korotaev, Yu. P. Prokhorov, UDC 532.529.6
and V.S. Fedotovskii

The problem of the motion of a sphere of variable radius a(t) moving with a veloeity u(t) near a plane wall
in an idealfluid is analyzed. The potentialof the velocity field, satisfying the Laplace equationand the boundary
conditions, can be found by the method of successive mappings. )

The kinetic energy of the fluid is found toequal

4 [ u? . a?
= — pad | —— — Ly 2,
T = mpa (a 5 —Bau+v ) (1)

where the attachment coefficients «, 8, and v have the following form:
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The maximum values of these coefficients are reached when the sphere touches the plane and are a=0.8038,
B =0.5326, and y =4.7317.

When the sphere is moving in an unbounded volume of fluid these quantities are 0.5, 0, and 3, respectively.

It is interesting to note that the term Bau contained in (1) describes the interaction ofthe processes of
expansion (compression) and translational motion of the sphere.

The reaction of the fluid acting onthe sphere is determined from the Lagrange equations corresponding
to the generalized coordinates — the position of the center ofthe sphere and its radius:

d [ory T

sz-—- 7 \E—) - 2 3 s (3)
d [ar orT

Q=— 3 (EFTG - 4)

Equation (3) gives directly the reaction force of the fluid in the direction normal to the wall, while Eq.
(4) represents the total force of the pressure acting on the sphere: Qa =41aP.

When the sphere is touching the plane surface Egs. (3) and (4) have the form
Qu=— 5= pa? (@ —B) (3 +ai), )

Y —_— [N v _— ﬁ .
P/p=( 5 )a-—}— ( 3 )aa. (6)

\ /

From (5) it follows that the force acting on an expanding sphere touching the plane is 1.83 times less than
the force acting on the sphere in anunbounded volume of fluidwith u=a.

Equation (6) is alsoof definite interest. This equation can be integrated in the simplest cases. For
example, the time of collapse of a spherical cavity touching a rigid surface and having an initial radius a,is

fy = 0.949a, V_lf__ , )
0
where P, is the pressure in the fluid far from the cavity.
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We note that in this case the time of collapse isabout 4% greater than the time of collapse ofa cavity in
an unbounded volume of fluid (the Rayleigh problem).

Inthe other case, when a spherical cavity grows at a surface under the action of a constant pressure,
its growth rate has the form
. 2P P
= — e x0.713 —_—
¢ l/p G—a) V o (8)

This isapproximately 1.2times less than the growth rate of a spherical cavity in an unbounded fluid.

Dep. 798-78, Dec. 5, 1977,
Original paper submitted Feb. 14, 1977.

EQUATIONS FOR CALCULATING CONTACT
THERMAL RESISTANCES AT LOW CLAMPING
PRESSURES FORDETACHABLE JOINTS

E. P. Lippo UDC 536.21

We find functions for calculating the contact thermal resistances (CTR) at low contactpressures (0<p=
20 - 10° Pa) for detachable joints at temperatures inthe contact zone nohigher than 0.3 of the melting pressure
of the material in contact. Here the melting temperature is understood to be for that material for which it is
lower.

On the basis of the idea of Clausing and Chao concerning the possibility of summing the thermal resis-
tances due to the confinement of the heat-flux streamlines to the macro- and microcontacts, one canwrite the
following equations:

Rm = Rmr + Ryng *+ Rmns Rm = Rmr + Rmgs Rm = Rme + Rmpe

Using V. A. Mal'kov's equation for the contact thermal resistance, we obtain the equations for calculating
the CTR with allowance only for the nonplane nature of the surfaces incontact.

For sphere-to-sphere contact

Rmnsp-sp: — 1 . Vg In [sin(—g- l/fc_sp:s_p_ H .

ala *m Sn 4

For sphere-to-plane contact

4 ]rS—n. . {a l/-Sc
R = — — » —— In|sin { — sp=pl .
Wsp-p= T T YT i | "2 =L )

For cylinder-to-eylinder contact along the generatrix

2 Sn ln[sin(i . Sec-c \‘]
RmHC"C:_ s ' LAim 2 Sn J

For cylinder-to-plane contact along the generatrix of the cylinder

2 Sn fa Scc. 1 ]
-, 2, L Pl
Rmnc-pl o Do n[sm ( > 5o )

In writing the equations for the boundary contact areas it is assumed that the deformation is elastic. The
radii of curvature of the boundary surfaces in the contact zone entering into these equations are determined
from the following equations.

For the cases of sphere-to-sphere and sphere-to-plane contacts
Sn

! Sl’l \ R__l..(_—--—-_i_d\
m=y (i —a) Byl e
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For the cases of cylinder-to-cylinder or cylinder-to-plane contacts along the generatrix

2 ) 1 52

Rlz_l_( Sn +d1 R Rzz'—('_—g_+d2>
2 41, ) 2\ 4124,

The well-known empirical equations should be used to determine Ry, and Ry, g.

Equations for the determination of the CTR in cases whenthe surfaces in contact have macro- and miero-
deviations of shape, which are usable in practical engineering, are obtainedas a resulf.

Dep. 799-78, Dec. 13, 1977.
Original paper submitted June 8, 1977.

SOLUTION OF SOME HEAT-CONDUCTION PROBLEMS
WITH MIXED BOUNDARY CONDITIONS BY THE
METHOD OF ELECTRICAL MODELING

G. P. Tarikov UDC 536.21

We analyze the boundary problem characterized by the differential equation of heat eonduction AT =0 and
by the boundary conditions T =V(x, y) in the region I of the plane z = 0, and g = 0 outside the region Z in the
plane z = 0, where

g=—hgradT.

To simplify the problem it isassumed that

V (x, y) = V4= const.

In the electrical modeling of the heat-conduction problem under consideration we use the analogy which
exists between its integral equation and the integral equation characterizing the charge distribution on the sur-
face of a conducting plate having a constant potential.

The modeling is carried out with a quasisteady electric field on a special electricalmodeling device.

The error of the experimental results is estimated on thebasis of a theoreticaland anexperimental solu-
tion of the problem for a region T in the form of an ellipse.

The results of the experimental solution of new problems are presented for the following shapes of the
region Z: a circle with an eccentrically located cutout and a square with a cutout.

The lines of equal values of the function ¢(x, y) for these regions I are shown.

Equations for the determination of the function #(x, y) for some characteristic cross sections of the
regions I are obtainedas a result of mathematical treatment of the experimental results using the method of
least squares and a Minsk-22 computer.

It is concluded that electrical modeling is possible for heat-conduction problems of the type under consid-
eration for regions Z with arbitrary configurations.

Dep. 797-78, Dec. 5, 1977.
Original paper submitted May 27, 1976.

1003



STABILITY OF A LAMINAR FLAME
ON A GRID SURFACE

O. N. Bryukhanov and V. G. Kharyukov UDC 536.45

Heat-resistant metal grids comprise one of the varieties of fire nozzles in infrared gas radiators. The
energy source providing for the heating of the grid is the combustion reaction near its surface. With stable
combustion the velocity of the gas —air mixture is equalto the normal velocity of the flame. The normal veloc-
ity of the flameas a function of the veloeity of the gas — air mixture was investigated to clarify the behavior
of the combustion zone as the velocity of the gas — air mixture varies. The investigations showed that the dis-
tance betweenthe grid surface and the flame is minimal when the ratio of the velocity of the gas —air mixture
to the velocity of the adiabatic flame is0.42. On thebasis of the proposed method of determining the position
of the flame above the grid calculations were made of the amount of heat imparted to the grid from the flame
as a function of the relative velocity for a stoichiometric propane —airmixture. In doing this the temperature
of the combustion products was determinedfrom the equations of thermal theory while the amount of heatimpart-
ed to the grid was calculated from the change in the heat content of the combustion products. The results of
the calculations are insatisfactory agreementwith the analogous data of other authors.

Dep. 929-78. Feb. 6. 1978.
Original paper submitted Apr. 1, 1977.

DIRECTIONAL REFLECTIVITY OF A
MULTILAYER ABSORBING SYSTEM

I. M. Korzhenevich UDC 536.3

This paper is devoted to the calculation of multilayer spectrally selective systems having layers of arbi-
trary thickness. The present calculation is applicable, inparticular, to the case of relatively thick layers,
(a thickness of 1-10 um) which have an advantage over experimentally studied thin-layer systems with layers
on the order of 1072 pm thick [1, 2] interms of the technological efficiency of fabrication andthe stability.

Earlier calculations of multilayer systems have beenmade either for nonabsorbing layers or in the case
of normal incidence of the radiation [3-5]. But allowance for the absorption of the layers is necessary in prin-
cipal, since it is precisely to it that the selective properties of the system are due, while the angular depen-
dence of the reflectivity (RE) is very important, as shown in the present paper.

In this paper multilayer systems are calculated with an arbitrary angle of incidence and number of
layers with allowance for their absorption. For this purpose the well-known recursion equations (between
the cases of N and N — 1 layers) are generalized with allowance for oblique incidence and the absorbing proper-
ties of thelayers. The quantities entering intothese equations — the Fresnel coefficients of reflectionat the

b
|
28
1
Fig.1. Dependence of nor-
mal (Pp, solid curve)and
r\ hemispherical (Py, dashed
9% \ curve) reflectivities on
\ film thickness h, pym.
a
o 20 40 4
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boundaries of the layers, the phase advance, and the extinction within the layers — were calculated as functions
of the angle ¢ of incidence oftheradiation on the systemand of the index of refractionn and the coefficient of

absorptionk of the layers.

The result of the calculation is presented in the form of equations for RE, which can serve directly asa
computer algorithm.

The RE of several three-layer systems, consisting of SiOand Ge films onmetal backings of Au, Ag, Cu,
and Al, were calculated as examples. On these examples one sees the strong angular dependence of the RE,
leading to a pronounced difference between the hemisphericaland normal RE (in previous papers the hemi-
spherical RE was erroneously estimated from thenormal RE). The dependence of the normaland hemispheri-
cal RE on the thickness hgjg =hge =h (um) of films deposited ona goldbacking is presented in Fig. 1 (the wave-
length of the radiationis 4 pm).
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EQUATION OF STATE FOR ETHYL
ESTER OF ISOVALERIC ACID

K.D. Guseinov and N. M. Bairamov UDC 536.71

The density of the ethylester of isovaleric acid (with a purity of 99.9%) inthe temperature range of 283~
600°K and the pressure range of 1-1000 bar was investigated by the method of hydrostatic suspension [1, 2]. The
results of the investigations are presented in Table 1. The errorof the data is estimated as0.19.

Two different equations of state were constructed for the investigated ester in the form

P=K(T)p*—L(T)p%
Pv=RT [l — A(T)p—B(T) ],
where K(T), L(T), A(T), and B(T) are coefficients determined from the test data; v=1/p, p is the density, g/
cm®; P is the pressure, bar; R =Ry/u, and R(=8.3143 J/mole - deg; p is the molecular mass.

Using these equations one can calculate the density of the ethyl ester of isovalericacid up to a tempera-
ture of 580°K with an error of 0.05-0.2%; these equations are also suitable for calculating the thermal and
some thermodynamic properties.

TABLE 1. Density of the Ethyl Ester of Isovaleric Acid, p (kg/m?)

. B P, bar
T,°K 1 f 50 I 200 , 100 z 600 ’ 800 | 1000
280 880,2 884,6 895,8 908,9 920.6 931,0 941,0
320 841,8 846,4 860,9 877,2 891,4 903,0 914,0
360 800,8 807,8 825,7 845,8 862,3 876,53 888.,0
400 755.,5 767.4 789,8 814,3 833,4 850,0 £62,9
440 — 722,8 753,5 782,7 805,3 823,6 838,9
480 —_ 673,4 715,4 751,2 777.,0 797.5 815,5
520 — 617,1 676,2 719,7 749,7 773,0 792,2
360 — 546,2 636,2 6%8,7 723.,6 749.,4 769,5
600 —_ 417,0 592,6 657,0 697.5 725,8 747,2
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MENISCUS RADIUS AND DEPTH OF FILLING IN THE
MESH CAPILLARY STRUCTURE OF HEAT PIPE

N.N. Kochurova UDC 536.248.2:532.685

To assure the steady operation of a heatpipe in the assigned mode itis necessary that the total pressure
drop along the flow line in the vapor andliquid streamsnot exceed the difference in capillary pressures corre-
sponding to the geometry of the capillary structure of the wick. Thus, the condition for the steady mode of opera-
tion of a heat pipe can be written in the following way [1]:

Apy + 8oy <20 [ == 7 . @
where Ap; isthe pressure loss of the liquidtaking place due tofriction inthe capillary structure, the retarda-
tion of the liquid stream by the vapor stream, andthe differences in the heights of rise of the meniscus surfaces
in the evaporation and condensation zones; Apy, pressure losses in the vapor channel; o, surface tension of
heat carrier; Rg, minimum meniscus radius in the evaporation zone; Rp, maximum meniscus radius inthe con-
densation zone. Suppose that the wick of the heat pipe has a mesh structure (Fig.1). The diameter of the mesh
wire is 2¢ and the gap between wires is d. The liquid menisci witha radius R andthe boundary wetting angle
6 are indicated in the figure. Hthe level of liquid filling is such that the menisci are located along the line of
centers, then R =d/2cos §. But ifthe level is above or below this line then the radius will vary since the dis-
tance x between the points of contact of the liquid with neighboring wires will vary and the points themselves
will shift along the perimeter. Thus, finding the meniscus radius R comes down to the geometrical problem
of calculating the segments x supplementary to d, lying between the straight line x =¢ and the circle x2 +y° =4?,
as wellas to the calculation of theangle f (see Fig. 1). We designate the depth of filling of the system with the
heatcarrier as h. We stipulate that h =0 ifthe levelof the liquid coincides with the tangent to the first row of
wires. Atthe line of centers the depth of filling is h=a. Then one can easily obtain anexpression for the
meniscus radius:

d—2{a—1V%hE—1)
—hiyN

2 cos (e-arcsin fa ] (2)
a ;

R=

The meniscus radius will be minimal onthe line of centers (Ryjn =d/2cos 6) and maximal at h=0 or h=2a
[Rmax =(d+2a)/2sing]. Thus, when calculating heat pipes with capillary systems having round elements one
mustallow for the depth h offilling of the system which, as one can show, has an essential effect primarily on
the distribution of vapor pressure along the pipe.

4
Ax=Q
heo |
60« D
h=a a NP ¢ / g
X
h=2a

18

Fig. 1. Geometry of top layer of mesh structure.
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DETERMINATION OF THERMOPHYSICAL PROPERTIES
OF TWO-PHASE SYSTEMS ON THE BASIS
OF INTEGRAL CHARACTERISTICS

V.V, Vlasov, N. P. Fedorov, UDC 536.242:517.3
and Yu. S. Shatalov

An analysis is made of the problem of determining the thermophysical properties of materials in a zone of
phase transitions whenthe coefficients of thermal conductivity and diffusivity are piecewise~constant functions
of the temperature:

Ay u< up.
7\.2, u > up,

jan &< up,
lag, u> up)

h(u) = { a {u)

where up is the temperature of the phase transition.

The unknowns are six constants: the coefficients of thermal conductivity A and A, of the solid and liquid
phases, of thermal diffusivity a; and @, of the solid and liquid phases, and the heat y and temperature up of the
phase transition. The coordinate x = (t) of the phase interface is also unknown.

The experiment is divided into three stages: the heating of the solid material to the melting temperature,
the melting process, and the further heating of the melt.

The coefficients of thermal conductivity and diffusivity of the solid (i =1) and liquid (i = 2) phases are
determined from the equations
. 97 (o) L LR (o)

i = = » B " » M E} ’
bo(u (L, p))y? — (u] (0, py))? Arch Q, Arch? Q; u; (0, p;)

where the integral characteristics of the temperature u’{(x. pi) and of the heat flux q’{(p) have the form

o

w5 p) = | exp {—piflug (e Dt g () = | exp [—pitl g, (0 dt.
0 0

The latent heat u of the phase transition, the coordinate x =}(t) of the phase interface, and the tempera-
ture up of the phase transition are determined from the following system of integral equations:
T2

Xq@dn

T

1
T [ea0 (¥, To) —oyvy (%, T dx ——

W= (“P —Mh) (2 —er) — oL

O

()

(¢1—¢3) \ vy (5, 1) dx — [(“P(Cz —c)—pli@) =¢, \1 [oa (x, T) —0s(x, )] dx—
0

T2
: \ gmdrt, 4y (x, o) =hy, v; (x, TV =u; & 1) — hys
0 L

t

RS

e
uP: u (0, Ty, up=1u Y ), t], i <t< T, uP= u(l, 1,).

The relative error was estimated on the example of the coefficient of thermal diffusivity from the equa-

tion
A L 1/0) (8-
IAd] <9 VALY (L-1/Q) (8L 4)

==

a L pur (0, p) V11— 1j0° ArchQ
where the parameter p was chosen from the condition of the mimimum of the relative error.

Dep. 928-78, Jan. 30, 1978.
Original paper submitted Mar. 25, 1877.
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NONSTEADY HEAT TRANSFER TO A TWO-DIMENSIONAL
REGION WITH VARIABLE PHYSICAL PARAMETERS

Yu. I. Babenko UDC 536.242

A method published earlier [1] for determining a nonsteady temperature gradient at the boundary of a
semiinfinite two-dimensional region 0=x =, —w<y<» with variable physical parameters from the assigned
variation of the temperature Ty(y, t) of the boundary requires the existence of all the derivatives 90T (/dy",
as wellas their sufficiently slow growth asa function of the number.

In the case when the parameters of the medium depend only on the x coordinate and the time t it proved
possible to soalter the method that it became suitable for furictions Ty(y, t) having discontinuities of the first
kind along the y coordinate.

The modification of the method is based on the fact that for the "operator root, " written earlier in the
form

1
o _1_\ T—n 2n
Va_az_"ai Ty (¥, z)=2 (—nn ( 2 ) 9 2 T, 0,

o n=0 m gt %——” ay*"
an integrodifferential representation was found:
&7
4
—_— . —1) — I} Ty (o,
VI—E neo- (-2 ! felenaglinen
o aE Y @ wlya Vies ’

a2 17 _
exp | 4= Toly, )= T/—== Toly+2 thz, 7) exp (—2%) dz.
dy? Voa o,

LITERATURE CITED

1. Yu. I. Babenko, "Heattransfer from a sphere moving in a viscous liquid, " Inzh.-Fiz. Zh., 31, No. 6
(1976).

Dep. 924-78, Feb. 6, 1978.
Original paper submitted Sept. 12, 1977.

1008



INVESTIGATION OF THE THERMAL CONDITIONS
OF STRUCTURES USING CONJUGATE
THERMAL-CONDUCTIVITY EQUATIONS

V. 8. Khokhulin UDC 533.24,02

One element of the investigation of the thermal conditions of a structure is the determination of the tem-
perature fields in its elements. This problem comes down to the solution of multidimensional thermal-con-
ductivity equations, interrelated in the general case. For constant thermophysical characteristics (A = const,
Cy = const) the solution of such a problem can, according to [L], be represented in the form

Nt
T 0 2 Var{ Gitw v 9 i 9ds
=10 j (1)

where d¢ is a surface element of the j-th element (j = 1, 2, ..., N) and N is the number of elements of the ther-
mal model,

When Green's matrix G{t, x, 7, £{) is known, this solution is essentially written in explicit form, which is
very convenient for conducting thermal design calculations, However, the simplicity of representation of the
solution does not compensate for the complexity of the determination of the matrix G(t, x, 7, £).

A solution similar to (1) for the problem of calculating temperature fields in structures can also be ob-
tained when conjugate thermal-conductivity equations are used [2]. In this case, along with the main system
of thermal-conductivity equations, one also considers a system of conjugate inhomogeneous equations for
which the parameter P(rj, t) plays the role of the source function. The investigation of the thermal conditions
of a structure is accomplished using the functionals

N e N fe
Is = 2 5 S P(rj 1) T (r;,0) dDydt = Ef qy (rj» 1) T* (rj, 1) dD;dt,
S ig; i=lig Dj (2)

where T*(rj, t) is the conjugate temperature. The physical meaning of functional (2) is determined by the pa-
rameter of the conjugate equations, When P(rj, t) =6(r— r‘r’n) 6(t = te), for example, the functional Iy has the
value

N
12=E T ez 08 (r—r1l)8(t—1p) dDdt =T (0, to),

i.e., Izis none other than the temperature at the point r" of the region at the time t,, We note that, in accord-
ance with (2), the temperature T(rm, te) can also be determmed by a heat load d1fferent from the nominal one,
characterized by the source qy(rj, t) of the thermal-conductivity equations, i.e.,

e
f qy (tr 1) T* (s, 1) dD; dt.

lisl

I
l% <

T ¢l =

m?

T

This demonstrates the possibility of determining, using the functionals Iy, the quantitative characteristics
of the investigated thermophysical process in the range of heat load under consideration without carrying out
the repeated solution of the basic system of equations,

Examples of the construction of functionals Iy, are given in the report.

The approach to the investigation of the thermal conditions of structures which is being discussed is
most applicable at the stage of making design thermal calculations, when one must find various parameters
characterizing the thermal state of the structure in the presence of various thermal actions.

1009



LITERATURE CITED

1. 8, D, Ivasishen, "Green's matrix for an inhomogeneous parabolic boundary problem," Dokl, Akad, Nauk
SSSR, 187, No. 4 (1969),

2. V. Ya. Pupko, "The use of conjugate functions in the investigation of thermal~-conductivity and heat-
exchange processes," Inzh,-Fiz, Zh., 11, No, 2 (1966).

Dep. 930-78, February 6, 1978,
Original article submitted April 5, 1977,

1010



