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C A L C U L A T I O N  OF A H E A T  P I P E  W I T H  H E A T  

F L U X E S  E X C E E D I N G  T H E  L I M I T I N G  V A L U E  

B .  F .  A p t e k a r '  a n d  I .  M.  B l i n c h e v s k i i  UDC 536.248.2 

The problem of the axial temperature  profile and the dependence of the thermal  res is tances  of a heat pipe 
(Rh) and of the source -- sink system connectedwith the heat pipe (Rs_si) on the load factor  ~ =Q/Qlim when 
the heat flux Q t ransmit ted by the heat pipe exceeds the limiting heatflux Qlim is solved in the one-dimens ional 
approximation.  In this case the wick in the heating zone dries partly,  since the capil lary pump does notensure  
the pumping of the liquid heat c a r r i e r  through the entire lengthof the heat pipe. 

The calculation is ca r r i ed  out in four sections of the heat pipe: a) in the heating zone with a dry wick; b) 
in the heating zone with a moistened wick; c) in the adiabatic zone; d) in the condensation zone. A number of 
simplifying assumptions are  made and a connection is obtained between ~ and the dimensionless profile of the 
temperature  0sh of the shell of the heat pipe, 

where ~ is the dimensionless axial coordinate; ~71 is the dimensionless coordinate of the end of the dry section. 

The dimensionless thermal  res is tances  of the heat pipe and the source -- sink sys tem are determined by 
the equations 

(0o  - -  0 4 ) ,  • > t (Os  - -  O s i ) ,  z > 1 

P h :  (0o--04),  •  ' Ps -s i  : (Os- -Osi ) ,  ~ : :1  ' 

where 60, 04, 0s, and 6 si are  the dimensionless tempera tures  of the hot and cold ends of the heat pipe and of the 
heat source and sink, respect ively .  

The dependence Osh(~) was calculated by solving the heat-conduction equation for the shell of the heat 
pipe. The quantity ~1 was obtained from the well-known equation for determining the quantity Qlim in the one- 
dimensional approximation.  The equations obta inedare  supplemented by the heat-flux balances at the outer 
surface of the shell of the heat pipe in the heating and condensation zones. 

Analytical expressions for the dependences of p and ~ were obtained for two cases:  a) The axial heat con- 
duction of the shell is important; b) it is negligibly smal l .  The temperature  profiles along a heat pipe with a 
partly drywick andthe dependences of p and ~ were calculated on a computer .  It is shown that in the f i rs t  
case the heatpipes a n d s o u r c e - s i n k  sys tems  are  less sensitive toheat-f lux overloads than inthe second case.  
Since in the f i r s t c a s e  when Q>Qlim the deformation of the tempera ture  profile in the heating zone is not very 
noticeable, it is desirable to determine the experimental  values of Qlim from the bend in the dependence of R h 
o n  Q .  
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C A L C U L A T I O N  O F  T H E  S E P A R A T I O N  R A D I U S  OF A 

V A P O R  B U B B L E  D U R I N G  B O I L I N G  U N D E R  V A C U U M  

S. M.  K o n s t a n t i n o v  a n d  A .  A .  T e r e s h c h e n k o  

C O N D I T  IONS 

UDC 536.423.1 

An equation proposed ea r l i e r  fo r  the determinat ion of the separat ion radius of a vapor bubble during boiling in 
avacuum is refined. To determine the values of the coefficient C of the apparent  mass  in the calculating function 

we suggest  the empir ica l  dependence 

C = 219 exp (--3.4P), 

Dep. 802-78, Sept. 26, 1977. 
Original paper  submitted Feb. 18, 1977. 

P R O F I L E  S T A B I L I Z A T I O N  O F  P L A N E  F L O W  OF A 

F I S S I O N A B L E  M E D I U M  IN A Q U A S I - O N E - D I M E N S I O N A L  

A P P R O X I M A T I O N  W I T H  A B O U N D A R Y  C O N D I T I O N  

OF T H E  T H I R D  K I N D  

S .  M.  B a b e n k o ,  P .  P .  L a z a r e v ,  
a n d  A . S .  P l e s h a n o v  

UDC 536.24:532.54 

The flow of an ideal Newtonian gas, for which the coefficients of viscosity and thermal  conductivity are  
power-law functions of the tempera ture  T and the internalheat  re lease  is Q ~ l / T ,  ina plane channel of constant 
c ross  section is studied theoret ical ly.  In con t ras t to  [1], where an analogous problem was solvedwith a fixed 
value of T a t  the channel wails (a boundary condition of the f i r s t  kind), here the heat flux and T at the channel 
walls are  connected by a l inear relation (a boundary condition ofthe thirdkind).  As in [1], it is assumed that 
the Mach numbers  M are small  and the Reynolds and Pecl4t numbers are  large.  The s teady-s ta te  equations 
of hydrodynamics  are  decomposedwtth r e spec t t o  the small  parameter  M s. 

The t ransient  process  due to the turning on of heat re lease  at the channel entrance,  at which a stabilized 
s t ream with Q =0 a r r i ve s ,  is studied. On the exampleof  a model problem it isshown that the quas i -one-d imen-  
sional descript ion of the two-dimensionals i tuat ion has an asymptotic  cha rac te r .  The profiles of the velocity 
uand of T are  taken from the stabilized solution in implicit form, where T plays the role of the natural t rans-  
verse coordinate while the values of u and T at the channel axts are  the unknown functions. The coefficients 
of non-one-dimensional i ty  introduced in [1], which appear upon averaging, are  general ized to the case of a 
variable value of T a t  the wall. 

Graphs are  presented of the distribution atongthe length of the channel of the dimensionless values of 
T and u at the channel axis, as well as of the dimensionless decrease  in p r e s su re .  As a supplement to [1] it is 
discovered that the conditional length of stabilization approaches a constant value notonty as Q --*0 but also as 
Q ~ o  When the tempera ture  of the external  medium is low enoughthe rat io of the values of T at the channel 
wall and axis can va ry  nonmonotonically along the length of the channel. A boundary condition of the third kind leads to 
a sma l l e r  d i f fe rencebetweenthe  values ofT  a t the  channel wall and axis than a boundary condition of the f i rs t  kind. 

1. 

L I T E R A T U R E  C I T E D  
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ON T H E  R E A C T I O N  OF A F L U I D  TO A S P H E R E  

R A D I U S  M O V I N G  N E A R  A R I G I D  W A L L  

S .  K .  K o r o t a e v ,  Y u .  P .  P r o k h o r o v ,  
a n d  V . S .  F e d o t o v s k i i  

OF  V A R I A B L E  

UDC 532.529.6 

The problem of the motion of a sphere of variable radius a(t) movingwith a velocity u(t) near a plane wall 
in an ideal fluid is analyzed.  The potentialof the velocity field, satisfying the Laplace equationand the boundary 
conditions, can be found by the method of success ive  mappings.  

The kinetic energy of the fluid is found to equal 

4 ' U 2 �9 

where the at tachment coefficients a ,  /~, and y have the following form: 

a = y  1 + 3 j + 3  (c'--ag" + ' ' "  ' 

= 2 c 2 1 - -  (c.,___,_) 2 + (c.,___ag(co. 2a.,) 2 + ' "  , (2) 

7 = 3  1 ~ '  - - •  " ' I n  + . . . .  
C ' [ C 2 - -  0 2 

The maximum values of these coefficients are  reached when the sphere touches the plane and are  a= 0.8038, 
fl =0.5326, and ~/=4.7317. 

When the sphere is moving in an unbounded volume of fluid these quantities are  0.5,  0, and 3, respect ively .  

It is interesting to note that the term fl~u contained in (1) descr ibes  the interaction ofthe processes  of 
expansion (compression) and translational  motion of the sphere.  

The reaction of the fluid acting onthe sphere is determined from the Lagrange equations corresponding 
to the general ized coordinates -- the position of the center  of the sphere and its radius:  

d ( OT I + 2 0T 
qz=- -  dt \O---~, O--~-' (3) 

0 . = - -  dt O---a- (4) 

Equation (3) gives directly the react ion force of the fluid in the direction normal  to the wall, while Eq. 
(4) represents  the total force of the p ressure  acting on the sphere: Qa =4~a2P" 

When the sphere is touching the plane surface Eqs.  (3) and (4) have the form 

Q~ 
(5) 

P/P = \ 2 , 

F rom (5) it follows that the force acting on an expanding sphere touching the plane is 1.83 times less than 
the force acting on the sphere in an unbounded volume of fluidwith u =h. 

Equation (6) is a l soof  definite interest .  This equation can be integrated in the s implest  cases .  For  
example, the time of collapse of a spherical  cavity touching a rigid surface and having an initial radius a0 is 

t o ~, 0.949a 0 V--P- ~-o ' (7) 
where Pc is the p ressu re  in the fluid far  from the cavity.  

1001 



We note that in this case the t ime of collapse is about 4% grea te r  than the time of collapse of a cavity in 
an unbounded volume of fluid (the Rayieigh problem).  

Inthe other case,  when a spher ical  cavity grows at a surface under the action of a constant p ressure ,  
its growth rate has the form 

a =  V "  2 ~  ~0"713 V ~ -  p (v - ~) -~- 

This is approximately 1.2 t imes less than the growth rate  of a spherical  cavity in an unbounded fluid. 

Dep. 798-78, Dec. 5, 1977. 
Original paper  submitted Feb. 14, 1977. 

(8) 

E Q U A T I O N S  F O R  C A L C U L A T I N G  C O N T A C T  

T H E R M A L  R E S I S T A N C E S  A T  LOW C L A M P I N G  

P R E S S U R E S  F O R  D E T A C H A B L E  J O I N T S  

E .  P .  L i p p o  UDC536.21 

We find functions for calculating the contact thermal  res is tances  (CTR) at low con tae tp res su res  (0_< p<_ 
20 �9 10 ~ Pa) for detachable joints at t empera tures  in the contact zone no higher than 0.3 of the melting p ressu re  
of the mater ia l  in contact.  Here the melting temperature  is understood to be for that mater ia l  for which it is 
lower.  

On the basis of the idea of Clausing and Chao concerning the possibili ty of summing the thermal  r e s i s -  
tances due to the confinement of the heat-flux s t reamlines  to the m a c r o -  and microcontac ts ,  one can write the 
following equations: 

Rm = Rmr + Rms + Rmn; Rm = Rmr + Rms; Rm = Rmr + Rmn. 

Using V. A. Mal 'kov 's  equation for the contact thermal  res is tance ,  we obtain the equations for calculating 
the CTR with allowance only for the nonplane nature of the surfaces  in contact .  

For  sphere - to - sphere  contact 

4 
Rmnsp.sp = -- ~ |~ 

For  sphere- to-plane  contact  

4 
Pmnsp-pl= -- n ]Z~ 

~.m ~ S n I J  

For  cy l inder - to -cy l inder  contac t  along the generat r ix  

R m n c ' c -  .~ L i m  L ~, 2 " S n , " 

For  cyl inder- to-plane  contact along the generat r ix  of the cylinder 

Rmnc-pl=-- ~ " L-~m Sn 

In writing the equations for the boundary contact areas it is assumed that the deformation is elastic. The 

radii of curvature of the boundary surfaces in the contact zone entering into these equations are determined 

from the following equations. 

For the cases of sphere-to-sphere and sphere-to-plane contacts 

:td 1 , ', . 
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F o r  the ca ses  of c y l i n d e r - t o - c y l i n d e r  or  c y l i n d e r - t o - p l a n e  contacts  along the gene ra t r i x  

1 1 

4LO_dl ' 4L2d2 

The well-known e m p i r i c a l  equations should be used  to de te rmine  Rmr  and Rms .  

Equations for  the de te rmina t ion  of the CTR in ca ses  when the su r faces  in contact  have m a c r o -  and m i c r o -  
deviat ions of shape,  which a r e  usable  in p r a c t i c a l  engineer ing,  a r e  ob ta inedas  a r e s u l t .  

Dep. 799-78, Dec.  13, 1977. 
Or ig ina l  paper  submit ted  June 8, 1977. 

S O L U T I O N  O F  S O M E  H E A T - C O N D U C T I O N  P R O B L E M S  

W I T H  M I X E D  B O U N D A R Y  C O N D I T I O N S  BY T H E  

M E T H O D  O F  E L E C T R I C A L  M O D E L I N G  

G .  P .  T a r i k o v  UDC 536.2 l  

We analyze  the boundary p rob lem c h a r a c t e r i z e d  by the d i f fe ren t ia lequa t ion  of heat  conduction AT =0 and 
by the boundary condit ions T =V(x, y) in the region  Z of the plane z = 0, and q = 0 outs ide the region 2; in the 
plane z = 0, where  

q = -- ~, grad T. 

TO s impt l fy the  p rob lem it t s a s s u m e d  that 

V (x, g) = V o = const. 

In the e l e c t r i c a l  model ing of the heat -conduct ion p rob lem under cons idera t ion  we use the analogy which 
ex i s t s  between its in tegra l  equation and the in tegra l  equation cha rac t e r i z ing  the charge  d is t r ibu t ion  on the s u r -  
face of a conducting plate having a cons tan tpo ten t i a t .  

The model ing is c a r r i e d  out with a quas i s teady  e l e c t r i c  f ield on a spec ia l  e l e c t r t c a l  model ing device .  

The e r r o r  of the expe r imen ta l  r e su l t s  is e s t ima ted  on the bas i s  of a t heo re t t c a l and  an expe r imen ta l  so lu-  
t ion of the p rob lem for a reg ion  Z in the form of an e l l i p s e .  

The r e su l t s  of the expe r imen t a l  solution of new prob lems  a re  p resen ted  for the following shapes  of the 
region Z: a c i r c l e  with an e c c e n t r i c a l l y l o c a t e d  cutout and a square  with a cutout.  

The l ines  of equal  values  of the function r y) for  these regions  Z a r e  shown. 

Equations for  the de te rmina t ion  of the function~b(x, y) for  some c h a r a c t e r i s t i c  c r o s s  sect ions  of the 
regions  Z a r e  ob ta inedas  a r e s u l t  of ma thema t i ca l  t r e a tmen t  of the expe r imen ta l  r e s u l t s  using the method of 
l e a s t  squares  and a Minsk-22 compute r .  

It is concluded that e l e c t r i c a l  model ing is poss ib le  for  heat -conduct ion p rob lems  of the type under cons id-  
e ra t ion  for reg ions  Z with a r b i t r a r y  conf igura t ions .  

Dep.  797-78, Dec .  5, 1977. 
Or ig ina l  paper  submit ted  May 27, 1976. 
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S T A B I L I T Y  OF  A L A M I N A R  F L A M E  

ON A G R I D  S U R F A C E  

O.  N.  B r y u k h a n o v  a n d  V .  G.  K h a r y u k o v  UDC 536.45 

Heat - res i s tan t  metal  grids compr ise  one of the variet ies  of fire nozzles in infrared gas rad ia tors .  The 
energy source  providing for the heating of the gr id  is the combustion reaction near its surface.  With stable 
combustion the velocity of the gas -- a i r  mixture is equal to the normal  velocity of the flame. The normal  veloc-  
ity of the f l ameas  a function of the velocity of the g a s -  a ir  mixture was investigated to clarify the behavior 
of the combustion zone as the velocity of the g a s -  a i r  mixture var ies .  The investigations showed that the dis-  
tance between the gr id  surface and the flame is minimal when the rat io of the velocity of the gas -- a ir mixture 
to the velocity of the adiabatic flame is 0 .42.  On the bas is of the proposed method of determining the pos ition 
of the flame above the gr id  calculations were made of the amountof  heat imparted tothe grid from the flame 
as a function of the relative velocity for a s toichiometr tc  p r o p a n e -  a i rm ix tu r e .  In doing this the temperature  
of the combustion products was determined f rom the equations of thermal  theory while the amount of he at impar t -  
ed to the grid was calculated from the change in the heat eontentof the combustion products.  The resul ts  of 
the calculations are  in sa t i s fac tory  agreementwi th  the analogous data of other authors .  

Dep. 929-78, Feb. 6. 1978. 
Original paper submitted Apr.  1, 1977. 

D I R E C T I O N A L  R E F L E C T I V I T Y  OF  A 

M U L T I L A Y E R  A B S O R B I N G  S Y S T E M  

I .  M.  K o r z h e n e v i e h  UDC 536.3 

This paper is devoted to the calculation of mult i layer  spectral ly selective sys tems having layers  of a rb i -  
t r a ry  thickness.  The present  calculation is applicable, in par t icular ,  to the case of relat ively thick layers ,  
(a thickness of 1-10 ~m) which have an advantage over experimentally studied thin- layer  sys tems wi th layers  
on the order  of 10 -2 ~m thick [1, 2] in t e rms  of the technologicaleff iciency of fabrication andthe stability. 

Ea r l i e r  calculations ofmul t [ layer  sys tems have beenmade either for nonabsorbinglayer$ or in the case 
of normal  incidence of the radiation [3-5]. But allowance for the absorption of the layers  is necessa ry  in pr in-  
cipal, since it is prec ise ly  to it that the selective propert ies  of the sys tem are due, while the angular depen- 
dence of the reflect ivi ty (RE) is very  important ,  as shown in the present  paper.  

In this paper  mult i layer  sys t ems  are  calculated with an a rb i t r a ry  angle of incidence and number of 
layers  with allowance for their absorption. For  this purpose the well-known recurs ion  equations (between 
the eases of N and N -- 1 layers)  are  general izedwith  allowance for oblique incidence and the absorbing proper-  
ties of t he l aye r s .  The quantities entering into these equations -- the Fresne l  coefficients of ref lec t ionat  the 

o,8 

@ 

) 
zo ~o h 

Fig. 1. Dependence of no r -  
mal (Pn, solid curve)and 
hemispher ical  (Ph, dashed 
curve) reflectivi t ies on 
film thickness h, /~m. 
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boundaries of the layers ,  the phase advance, and the extinction within the layers  -- were calculated as functions 
of the angle 0 of incidenee of theradia t ion on the sys temand  of the indexof re f rac t ionn  and the coefficient of 
absorption k of the l ayers .  

The resul t  of the calculation is presented in the form of equations for RE, which can serve directly as a 
computer  algori thm. 

The RE of severa l  th ree - l ayer  sys tems ,  consisting of S iOand Ge films on metal  backings ofAu, Ag, Cu, 
and AI, were calculated as examples.  On these examples one sees the strong angular dependence of the RE, 
leading to a pronounced difference between the hemispherical  and normal  RE (in previous papers  the hemi-  
spherical  RE was e r roneous ly  e s t ima tedf rom the normal  RE). The dependenee of the normaland  hemispher i -  
cal RE on the thickness hs io  =hGe =h (pm) of films deposited ona goldbacking is presented in Fig.  1 ( thewave- 
length of the radiation is 4/~m). 
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Dep. 922-78, Jan.  24, 1978. 
Original paper submitted Oct. 8, 1977. 

E Q U A T I O N  OF S T A T E  F O R  E T H Y L  

E S T E R  OF  I S O V A L E R I C  A C I D  

K . D .  G u s e i n o v  a n d  N.  M.  B a i r a m o v  UDC 536.71 

The density of the ethyl es ter  of isovaleric acid (with a purity of 99.9%) in the tempera ture  range of 283- 
600~ and the p res su re  range of 1-1000 bar was investigated by the methodof  hydrostat ic  suspension [1, 2]. The 
resul ts  of the investigations are  presented in Table 1. The e r r o r  of the data is es t imated as 0.1%. 

Two different equations of state were constructed for the investigated es te r  in the form 

P = K (T) p ~" ~- t (T) pS, 

Pu = RT [1 -r A (T) p -:- B (T) pv], 

where K(T), L(T), A(T), and B(T)are  coefficients determined from the test  data; v = l / p ,  p is the density, g /  
cm3; P is the p ressure ,  bar;  R =R0/p , and R 0 =8.3143 J /mole  �9 deg;/~ is the molecular  m a s s .  

Using these equations one can calculate the density of the ethyl es te r  of i sovaler ieac id  up to a t empera -  
ture of 580~ with an e r r o r  of 0.05-0.2%; these equations are  also suitable for  calculating the thermal  and 
some thermodynamic proper t ies .  

TABLE 1. Density of the Ethyl Es te r  of Isovalerie Acid, p (kg/m 3) 

P, bar 
T, ~ 

I 50 200  400  600  800  1000 

280 
320 
360 
400 
440 
480 
520 
560 
600 

880,2 
841,8 
800,8 
755,5 

884.6 
846,4 
807,8 
767,4 
722,8 
673,4 
617,1 
546,2 
417,0 

895,8 
860,9 
825,7 
789,8 
753,5 
715,4 
676,2 
636,2 
592,6 

908,9 
877,2 
845,8 
814,3 
782,7 
751,2 
719,7 
6~8,7 
657,0 

920,6 
891,4 
862,3 
833,4 
805,3 
777,0 
749,7 
723,6 
697,5 

931,0 
903,0 
876.5 
850,0 
823,6 
797,5 
773,0 
749,4 
725,8 

941,0 
914,0 
888.o 
862,9 
838,9 
815.5 
792,2 
769,5 
747,2 
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Dep. 927-78, Feb.  6, 1978. 
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M E N I S C U S  R A D I U S  A N D  D E P T H  OF F I L L I N G  IN T H E  

M E S H  C A P I L L A R Y  S T R U C T U R E  OF H E A T  P I P E  

N . N .  K o c h u r o v a  UDC 536. 248.2:532. 685 

To assure  the steady operation of a heatpipe in the assigned mode it is  necessa ry  that the total p ressure  
drop alongthe flow line in the vapor andtiquid s t r e a m s n o t  exceed the difference in capil lary p res su res  c o r r e -  
sponding to the geometry  of the capi l lary  s t ructure  of the wick. Thus, the condition for the steady mode of opera-  
tion of a heat pipe can be written in the following way [1]: 

APl ~- AP.v~ 2o I, Re Rc l ' (1) 

where Ap/ is the p res su re  loss of the liquidtaking place due to friction in the capi l lary s t ructure ,  the r e t a rda -  
tion of the liquid s t ream by the vapor s t ream,  and the differences in the heights of r i se  of the meniscus surfaces  
in the evaporation and condensation zones; APv, p ressu re  losses in the vapor channel; a, surface tension of 
heat c a r r i e r ;  R e, minimum meniscus radius in the evaporation zone; Rc, maximum meniscus radius in the con- 
densation zone. Suppose that the wick of the heat pipe has a mesh s t ruc ture  {Fig. 1). The diameter  of the mesh 
wire is 2a andthe gap between wires is d. The liquid menisci  witha radius R andthe boundary wetting angle 
0 are  indicated in the f igure.  If the level of liquid filling is such that the menisci  are  located along the line of 
centers ,  then R =d/2cos 0. But if the level is above or below this line then the radius will vary since the dis-  
tance x between the points of contact  of the liquid with neighboring wires will va ryand  the points themselves 
will shift along the pe r imete r .  Thus,  finding the meniscus radius R comesdown to the geomet r ica lp rob lem 
of calculating the segments x supplementary to d, lying between the s traight  line x = a and the c i rc le  x 2 +y2 = a 2, 
as wel las  to the calculation of theangle/~ (see Fig.  1). We designate the depth of filling ofthe sys tem with the 
heat c a r r i e r  as h. We stipulate that h =0 if the level of the liquid coincides with the tangent to the f i rs t  row of 
wires .  Atthe line of centers  the depth of filling is h = a.  Then one can easi ly obtain anexpress ion  for the 
meniscus  radius:  

,~ - 2 (~  - 1 " ~ )  ,R-- 
2 cos (8 - -  arcsin l a - - h i  ) (2) 

a 

The meniscus  radius will be minimal  onthe line of centers  ( R m i  n =d/2cos  0)and maximal  at h =0 or h =2a 
i r m a  x =(d+2a) /2s in  0]. Thus, when calculating heat pipes wi thcapi l lary  sys tems having round elements one 
musta l low for the depth h of filling ofthe sys tem which, as one can show, has an essential  effect p r imar i ly  on 
the distribution of vapor p ressu re  along the pipe. 

!Y  
j .r=~ 

~=o t [ 

h=2~ 

~x 

Fig. 1. Geometry of top layer of mesh s t ructure .  
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D E T E R M I N A T I O N  OF T H E R M O P H Y S I C A L  P R O P E R T I E S  

O F  T W O - P H A S E  S Y S T E M S  ON T H E  B A S I S  

O F  I N T E G R A L  C H A R A C T E R I S T I C S  

V . V .  V l a s o v ,  N.  P .  F e d o r o v ,  
a n d  Y u .  S .  S h a t a l o v  

UDC 536. 242:517.3 

An analys is is made of the problem of determining the thermophys ica l propert ies  of mater ia ls  in a zone of 
phase transit ions whenthe coefficients of thermatconduct ivi ty  and diffusivity a re  plecewise-constant  functions 
of the tempera ture :  

Z(,0= fZ. U<Up. a(u)= Ja1' U<Up, 
[ 4, u > up, ~a~, u > up. 

where Up is the tempera ture  of the phase transit ion.  

The unknowns are  six constants:  the coefficients of thermal  conductivity Xt a n d ~  of the solid and liquid 
phases,  of thermal  diffus tvity a I and a 2 of the solid and liquid phases,  and the heat ~ and temperature  Up of the 
phase transi t ion.  The coordinate x = l ( t )of  the phase interface is also unknown. 

The experiment  is divided into three stages:  the heating of the solid mater ia l  to the melting tempera ture ,  
the melting process ,  and the fur ther  heating of the mel t .  

The coefficients of thermal  conductivity and diffus ivity of the solid (i =1) and liquid (i = 2)phases are  
determined from the equations 

Zi = q7 (P') L , ai = --,P'L" 0.~= u~ (L. pi) 
I (u:'(L, p,)) ' - --  (u~ (O, pi))-OArch Q~ Arch2Q~ u~(0, Pi) 

where the integral charac te r i s t i cs  of the tempera ture  u i (x. Pi) and of the heat flux qi (P) have the form 

uL(x, p O =  e x p [ - - p l q u i ( x ,  Odt, q~(P.z)= I e x p [ - - P d ] q ~ ( O d t .  

The latent heat ~ of the phase transition, the coordinate x =l(t) of the phase interface, and the t empera -  
lure Up of the phase t rans  ition are  determined from the following sys tem of integral equations: 

L Tt 

! ~ 1 i '  tt= (up--hi) ( c . - - q ) - - - -  L -- j [c2vz (x, "r2) - -  clvx (x, ~l)]dx--~-~ J q('r) dr, 
0 "l:t 

l ( t)  L r2 

(el-  c._,) 
,~ [o t b o t 

Up=U(0, r.,), Up=U[l ( t ) ,  t], r l < t < z , _ ,  U p = u ( L ,  ~1). 

The relat ive e r r o r  was est imated on the example of the coefficient of thermal  diffus tvity f rom the equa- 
tion 

laa----AJ <2  JALj-- '2 (l§ (6§ 
a L pu ~ (O, p) V I -  I,/Q ~ ArchQ 

where the pa ramete r  p was chosen from the condition of the m i m i ~ u m  of the relat ive e r r o r .  
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N O N S T E A D Y  H E A T  T R A N S F E R  TO A 

R E G I O N  W I T H  V A R I A B L E  P H Y S I C A L  

T W O - D  IME NS IONA L 

P A R A M E T E R S  

Y u .  I .  B a b e n k o  UDC536.242 

A method published ea r l i e r  [1] for determining a nonsteady temperature  gradient at the boundary of a 
semiinfinite two-dimensional  region 0 _x_< % --co< y < ~ with variable phys teal pa ramete r s  from the ass  igned 
variat ion of the tempera ture  T0(Y, t) of the boundary requires  the existence of all the derivatives 0nT0/8y n, 
as wel las  their  sufficiently slow growth as a function of thenumber .  

In the case when the pa ramete r s  of the medium depend only on the x coordinate and the thne t it proved 
possible to so a l ter  the method that it became suitable for fu6ctions T0(Y, t) having discontinuities of the f i r s t  
kind alongthe y coordinate.  

form 
The modif icat tonof  themethod is based on the fact that for the "operator  roo t , "  written ea r l i e r  in the 

1 

= " Ot 2 Oy2n 

an integrodlfferential  representa t ion was found: 

V r 0 Oz To(y,  l) ( O 0 2 ) I exp ( t - - T )  ~y2 , To(y.  r) d.c" 
Ot Oy"- Ot OY z ~ 1 F t - -  "r 

o 

exp tx ~ To (y, t) _ | ~  T O (y + 2 "l,r-~l z, t) exp (-- z a) dz. 
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I N V E S T I G A T I O N  O F  T H E  T H E R M A L  C O N D I T I O N S  

OF  S T R U C T U R E S  U S I N G  C O N J U G A T E  

T H E R M A L - C O N D U C T I V I T Y  E Q U A T I O N S  

V.  S. K h o k h u l i n  UDC533.24.02 

One element of the investigation of the thermal  conditions of a s t ruc ture  is the determination of the t em-  
pera ture  fields in its elements.  This problem comes down to the solution of multidimensional t he rma l -con-  
ductivity equations, in terrela ted in the general  case.  For  constant thermophysical  charac te r i s t i cs  (X = const, 
C V = const) the solution of such a problem can, according to [1], be represented in the form 

N t 

1=1 0 b I (i) 

where d~ is a surface  element of the j- th element (j = 1, 2 . . . . .  N) and N is the number of elements of the ther -  
mal model. 

When GreenTs matr ix  G(t, x, % 4) is known, this solution is essential ly writ ten in explicit form, which is 
ve ry  convenient for  conducting thermal  design calculations.  However, the simplicity of representat ion of the 
solution does not compensate  for  the complexity of the determination of the matr ix  G(t, x, r, 4). 

A solution s imi la r  to (1) for the problem of calculating tempera ture  fields in s t ruc tures  can also be ob- 
tained when conjugate thermal-conduct ivi ty  equations a re  used [2]. In this case, along with the main system 
of thermal-conduct iv i ty  equations, one also considers  a sys tem of conjugate inhomogeneous equations for 
which the pa rame te r  P(rj ,  t) plays the role of the source  function. The investigation of the thermal  conditions 
of a s t ruc ture  is accomplished using the functionals 

N t e  N te  

Iz = ~  S S P ( r j '  t) T (rj,t) dD2dt = ~ S  f qv(rJ' t) T* (rj, l) dDjdt, 
i=l t s D i i=lt s Dj (2) 

where T*(rj,  t) is the conjugate temperature .  The physical meaning of functional (2) is determined by the pa-  
r a m e t e r  of the conjugate equations. When P(rj ,  t) = 6(r - r ~  6(t - te), for  example, the functional IZ has the 
value 

N te 

]=It  s Dj 
T (rj, t) 6 (r--r~ dDjdt=Tfr~ m, tel 

i .e. ,  I z i s  none other  than the t empera tu re  at the point r~ of the region at the t ime te. We note that, in acco rd -  
ance with (2), the tempera ture  T( r  ~  te) can also be determined by a heat load different f rom the nominal one, 
charac te r i zed  by the source  qv(r j ,  t) of the thermal-conduct ivi ty  equations, i.e., 

T (r,,~ , 
1~1 t$ Dj 

This demons t ra tes  the possibil i ty of determining, using the functionals IZ, the quantitative charac te r i s t i cs  
of the investigated thermophysieal  p rocess  in the range of heat load under considerat ion without ca r ry ing  out 
the repeated solution of the basic sys tem of equations. 

Examples of the construct ion of functionals I~ a re  given in the report .  

The approach to the investigation of the thermal  conditions of s t ruc tures  which is being discussed is 
most  applicable at the s tage of making design thermal  calculations, when one must  find various pa ramete r s  
charac ter iz ing  the thermal  state of the s t ruc ture  in the presence  of various thermal  actions. 
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